Author Archives: kubu4

DNA Quantification – RLO viability DNased RNA

I previously DNased RNA I isolated from water filters that were part of the RLO viability experiment that Lisa and the Capstone students are conducting. I checked for residual gDNA carryover via qPCR and all of the samples that were intended for dosing the abalone came up positive. It’s likely due to such a high quantity of algae that was co-filtered with the potential RLOs, leading to over-saturation of the RNAzol with DNA, resulting in the gDNA carryover.

In turn, I think the DNase treatment was insufficient for the quantity of carryover DNA.

I am planning on re-DNasing those samples, but want to quantify any residual DNA present to make sure that the samples aren’t still too concentrated for the DNase.

Samples were quantified using the Robert Lab Qubit 3.0 and the Qubit dsHS reagents (high sensitivity), using 1uL of sample.

Results:

Residual DNA is still present, but at levels that are well below the maximum that the DNase treatment (10ug) can handle. I will redo the DNase treatment on these samples. Spreadsheet is linked, and embedded below, with sample concentrations.

Spreadsheet (Google Sheet): 20170424_filter_rna_dna_quant

Share

qPCR – CDFW White Abalone Samples (RLOv DNA helicase)

The samples that CDFW sent us earlier were previously checked for RLO presence with the withering syndrome qPCR assay.

Standard curve was from 20151106.

All samples were run in duplicate.

Master mix calcs are here; since I ran these with the other samples, the master mix used was part of the other project indicated in the spreadsheet (Google Sheet): 20170420 – qPCR RLOv DNA Helicase

Plate layout, cycling params, etc. can be found in the qPCR Report (see Results).

Baseline threshold was manually set to 580.5, as previously determined.

Results:

qPCR Report (PDF): Sam_2017-04-20 07-50-18_CC009827.pdf
qPCR Data File (CFX): Sam_2017-04-20 07-50-18_CC009827.pcrd

Standard curve looks good and all samples provided come up positive for RLOv DNA helicase.

I’ve compiled the raw data of both the WSN qPCR and this in this Google Sheet: 20170420_CDFW_White_Ab_qPCR_summary

Here’s a summary table of the results (copy numbers are mean copies from qPCR replicates):

SAMPLE RLOV DNA HELICASE (COPIES) WSN1 (COPIES)
SF16-76_DG-1  165318.58 169.25
 SF16-76_DG-2  47839.81  20.70
 SF16-76_PE-1  1036697.17 633.75
 SF16-76_PE-2  46763.60  296.83
 SF17-17  117.29  2.16

NOTE: The WSN1 copies for SF17-17 is below the accepted detection limit of the qPCR assay (i.e. < 3 copies).

Will share my notebooks and spreadsheet with Blythe at CDFW.

Amplification Plots

Green = Standard Curve

Blue = Samples

Red = No template control

 

 

Share

Manuscript Writing – Submitted!

Boom!

 

Here are some useful links:

data records repo-URL: https://osf.io/j8rc2/
draft repo-URL: https://github.com/kubu4/paper_oly_gbs
draft: https://www.authorea.com/users/4974/articles/149442
preprint (Overleaf): https://www.overleaf.com/read/mqbbvmwxhncg
preprint (PDF): https://osf.io/cdj7m/

Share

Manuscript – Oly GBS 14 Day Plan

For Pub-a-thon 2017, Steven has asked us to put together a 14 day plan for our manuscripts.

My manuscript is accessible in three locations:

Current: Overleaf for final editing/formatting before submission Scientific Data.
Archival: Authorea for initial writing/comments.
Archival: GitHub for initial writing/issues.

Additionally, I have established a data repository with a Digital Object Identifier (DOI) at Open Science Framework

Here’s what I have going on:

Day 1

  • Convert .xls data records to .csv to see if they will render in OSF repo.
  • Assemble figure: phylogenetic tree.
  • Add figure to manuscript.
  • Deal with any minor edits.

Day 2

  • Assemble figure: Puget Sound map.
  • Add figure to manuscript.
  • Deal with any minor edits.

Day 3

  • Submit? Depends on what Steven’s availability is to finish of Background & Summary and write up Abstract.
Share

Data Summary – Black Abalone Phage qPCRs

A quick summary table of the various black abalone qPCRs I ran yesterday:

SAMPLE RLO_MCP RLO_ph_protease XC_prophage_portal RLOv_DNA_helicase WSN
06:06-50  +  +  +  +  +
06:06-52  +  +  +  +  +
07:12-01  -  -  -  +  -
07:12-02  -  -  -  -  -
08:13-05  +  +  +  -  +
08:13-18  +  +  +  -  +
08:13-24  +  +  +  -  +*
08:13-25  +  +  +  -  +
  • This sample technically showed amplification, but came up after the last point on the standard curve. Most likely due to extremely low concentration (~0.5ng/uL).

  • RLO Major Capsid Protein (RLO_MCP)

  • RLO Prohead Protease Protein (RLO_ph_protease)
  • XenoCal Phage Portal Gene (XC prophage)
Share

qPCR – WSN on Black Abalone

Ran qPCRs on a set of black abalone digestive gland DNA (sample list provided by Carolyn):

07:12-01 (Black Ab exp 1)
07:12-02 (Black Ab exp 1)
08:13-05 (Black Ab exp 2)
08:13-18 (Black Ab exp 2)
08:13-24 (Black Ab exp 2)
08:13-25 (Black Ab exp 2)
UW06:06-32
UW06:06-41
UW06:06-50 (Black Ab exp 1)
UW06:06-52 (Black Ab exp 1)

The two samples with a strikethrough did not have any DNA left in the tubes and were not run.

All samples were run in duplicate.

Standard curve was p18RK7 from 20161128.

Cycling params, plate layout, etc can be seen in the qPCR Report (see Results).

Baseline was set 580 as previously determined by Lisa.

Results:
qPCR Report (PDF): Sam_2017-04-13%2016-20-54_CC009827_WSN1.pdf
qPCR Data File (CFX): Sam_2017-04-13%2016-20-54_CC009827_WSN1.pcrd

Standard curve looked good.

The following samples did not amplify:
– 07:12 set
– Note: 08:13-24 technically did amplify, but comes up below the lowest point of the standard curve, so technically it is effectively “no amplification”.

The remaining samples all came up positive.

Will convey to Carolyn and Stan.

Share

qPCR – RLOv DNA Helicase on Black Abalone

Ran qPCRs on a set of black abalone digestive gland DNA (sample list provided by Carolyn):

07:12-01 (Black Ab exp 1)
07:12-02 (Black Ab exp 1)
08:13-05 (Black Ab exp 2)
08:13-18 (Black Ab exp 2)
08:13-24 (Black Ab exp 2)
08:13-25 (Black Ab exp 2)
UW06:06-32
UW06:06-41

UW06:06-50 (Black Ab exp 1)
UW06:06-52 (Black Ab exp 1)

The two samples with a strikethrough did not have any DNA left in the tubes and were not run.

All samples were run in duplicate.

Standard curve was from 20161106.

Cycling params, plate layout, etc can be seen in the qPCR Report (see Results).

Baseline was set 580.5 as previously determined.

Results:
qPCR Report (PDF): Sam_2017-04-13%2016-20-54_CC009827_RLOv_helicase.pdf
qPCR Data File (CFX): Sam_2017-04-13%2016-20-54_CC009827_RLOv_helicase.pcrd

Standard curve looked good, although efficiency is pushing it on the high end.

The following samples did <em>not</em> amplify:

  • 07:12-02
  • All 08 samples.

The remaining samples all came up positive, with the 06 set being extremely hot (came up around cycle 13).

Will convey to Carolyn and Stan.

 

 

Share

qPCR – RLO Prophage Genes

Ran qPCRs on a set of black abalone digestive gland DNA (sample list provided by Carolyn):

07:12-01 (Black Ab exp 1)
07:12-02 (Black Ab exp 1)
08:13-05 (Black Ab exp 2)
08:13-18 (Black Ab exp 2)
08:13-24 (Black Ab exp 2)
08:13-25 (Black Ab exp 2)
UW06:06-32
UW06:06-41

UW06:06-50 (Black Ab exp 1)
UW06:06-52 (Black Ab exp 1)

The two samples with a strikethrough did not have any DNA left in the tubes and were not run.

Gene targets:
– RLO Major Capsid Protein (RLO_MCP)
– RLO Prohead Protease Protein (RLO_ph_protease)
– XenoCal Phage Portal Gene (XC prophage)

Master mix calcs are here (Google Sheet): 20170413 – qPCR_XCphagePortal_RLOcapsid_RLOprohead

The same master mix calculations were used for each, just swapped in appropriate primers.

All samples were run in duplicate.

Cycling params, plate layout, etc. can be found in the qPCR Report (see Results below).

Results:
qPCR Report (PDF): Sam_2017-04-13 14-56-03_CC009827.pdf
qPCR Data File (CFX): Sam_2017-04-13 14-56-03_CC009827.pcrd

Melt curves for all three primer sets looked perfect (see below)

Amplification present for all samples, with all three primers except the 07:12 samples.

Will pass info along to Carolyn and Stan.

Will add info to the following two spreadsheets (Google Sheets):

Black Abalone: Expt 1 – WS & Phage

Black Abalone: Expt 2 – WS only

 


 

Green = RLO_ph_protease

Brown = RLO_MCP

Blue = XC_prophage

Share

DNA Quantification – Black Abalone DNA (Black Ab Exp. 2)

Lisa recently isolated DNA from the following samples:

08:13-05 (Black Ab exp 2)
08:13-18 (Black Ab exp 2)
08:13-24 (Black Ab exp 2)
08:13-25 (Black Ab exp 2)

I quantified the samples using the Roberts Lab Qubit 3.0 with the Qubit ds High Sensitivity kit. Used 1uL of each sample.

Samples were stored in designated boxes in -20C in Rm. 240.

Results:

Qubit output (Google Sheet): 20170413_DNA_quantification_qubit

 

SAMPLE CONCENTRATION (ng/uL)
08:13-05 62.4
08:13-18 0.536
08:13-24 0.454
08:13-25 8.8

NOTE: The entirety of sample 08:13-24 will be provided to Stan Langevin for high-throughput sequencing.

Share