Tag Archives: bisulfite

Epigenetic variation of two populations grown at common site

In a different experiment compared to when Fidalgo siblings were outplanted at two sites, we also examined Hood Canal (HC) and Oyster Bay (SS/South Sound) grown at Clam Bay (Manchester). Descriptor.

These were the oysters Katherine Silliman spawned in the summer of 2015 and represent seed Jake outplanted years ago.

This was run against the BGI scaffolds >10k.
BSMAP-06-BGIv002_1CC19CB1.png

The results are quite interesting.
RStudio_1CC19CEC.png

The full notebook can be found at https://github.com/sr320/nb-2016/blob/master/O_lurida/BSMAP-06-BGIv001.ipynb.

Share

Fidalgo offspring at two locations

We carried out whole genome BS-Seq on siblings outplanted out at two sites: Fidalgo Bay (home) and Oyster Bay. Four individuals from each locale were examined.

A running description of the data is available @ https://github.com/RobertsLab/project-olympia.oyster-genomic/wiki/Whole-genome-BSseq-December-2015.

I need to look back to a genome to analyze this. We did some PacBio sequencing a while ago.
– http://nbviewer.jupyter.org/github/sr320/ipython_nb/blob/master/OlyO_PacBio.ipynb

In recap, the fastq file had 47,475 reads: http://owl.fish.washington.edu/halfshell/OlyO_Pat_PacBio_1.fastq

3058 of these reads were >10k bp: http://eagle.fish.washington.edu/cnidarian/OlyO_Pat_PacBio_10k.fa

Those 3058 reads were nicely assembled into 553 contigs: http://eagle.fish.washington.edu/cnidarian/OlyO_Pat_PacBio_10k_contigs.fa


Step forward a bit and all 47475 reads were assembled into the 5362 contigs known as OlyO_Pat_v02.fa http://owl.fish.washington.edu/halfshell/OlyO_Pat_v02.fa

The latter (v02) was used to map the 8 libraries. Roughly getting about 8% mapping
BSMAP-03b-Genomev2-10x_1CB41B65.png

About 15 fold average coverage
BSMAP-03b-Genomev2-10x_1CB41B7A.png

And with a little filtering
BSMAP-03b-Genomev2-10x_1CB41B9E.png

Note that awk script filtered for 10x coverage! this could be altered.

and R have an intriguing relationship
BSMAP-03b-Genomev2-10x_1CB41BC9.png

With BGI Draft Genome

Following the same workflow with the BGIv1 scaffolds >10k bp have about 16% or reads map.
BSMAP-05-BGIv001_1CB41C8D.png

3 fold coverage
BSMAP-05-BGIv001_1CB41CB3.png

again, making sure there is 10x coverage at a given CG loci
we get
RStudio_1CB41F50.png

Much weaker if we allow only 3x coverage at a given CG loci
RStudio_1CB421EC.png

and the bit of R code

setwd("/Volumes/web-1/halfshell/working-directory/16-04-05")

library(methylKit)

file.list ‘mkfmt_2_CGATGT.txt’,
‘mkfmt_3_TTAGGC.txt’,
‘mkfmt_4_TGACCA.txt’,
‘mkfmt_5_ACAGTG.txt’,
‘mkfmt_6_GCCAAT.txt’,
‘mkfmt_7_CAGATC.txt’,
‘mkfmt_8_ACTTGA.txt’
)

myobj=read(file.list,sample.id=list(“1″,”2″,”3″,”4″,”5″,”6″,”7″,”8″),assembly=”Pat10k”,treatment=c(0,0,0,0,1,1,1,1))

meth<-unite(myobj)
head(meth)
nrow(meth)
getCorrelation(meth,plot=F)
hc PCA<-PCASamples(meth)

Share

Data check on Oly BS-Seq samples

 

BS-seq_Libraries_for_Sequencing_at_Genewiz___Sam_s_Notebook_1C505006.png

For the 12 samples

Select 4 samples from 1NF gel take 2
Select 4 samples from 2NF gel take 2

Select 2 from gel take 2 Lotterhos
M1
M2
M3

Select 2 from the following sent to Katie (do not have to run on gel)
NF2 14
NF2 6
NF2 18
NF2 15
NF2 17

DNA_Isolation_–_Oly_gDNA_for_BS-seq___Sam_s_Notebook_1C50508C.png

Short term will just check out the first 8.

These are samples outplanted at Oyster Bay and Fidalgo, and in both cases parents from Fidalgo.

The hypothesis is that Epigenetic pattern will differ (and we can attribute to Environment)

Quick look at raw data

BS-seq_Libraries_for_Sequencing_at_Genewiz___Sam_s_Notebook_1C505191.png

Sequencing Platform: Illumina HiSeq2500

Read Type/Length: 50bp single-end, single index

Total Number of Reads: 116,280,817

Reads Per File:

11_GGCTAC_L001_R1_001.fastq.gz    10933121

12_CTTGTA_L001_R1_001.fastq.gz    10816647

1_ATCACG_L001_R1_001.fastq.gz    9402890

2_CGATGT_L001_R1_001.fastq.gz    11954873

3_TTAGGC_L001_R1_001.fastq.gz    11817358

4_TGACCA_L001_R1_001.fastq.gz    11606618

5_ACAGTG_L001_R1_001.fastq.gz    12589609

6_GCCAAT_L001_R1_001.fastq.gz    12489766

7_CAGATC_L001_R1_001.fastq.gz    10295293

8_ACTTGA_L001_R1_001.fastq.gz    14374642

Unzip

In [1]:
cd /Volumes/Histidine/hectocotylus/whole-BS-01
/Volumes/Histidine/hectocotylus/whole-BS-01
In [2]:
%%bash
for f in *.gz
do
  STEM=$(basename "${f}" .gz)
  gunzip -c "${f}" > /Volumes/Histidine/hectocotylus/whole-BS-01/fq/"${STEM}"
done

FastQC

In [3]:
!/Applications/bioinfo/FastQC/fastqc 
-o /Volumes/Histidine/hectocotylus/whole-BS-01/fq/ 
-t 4 
/Volumes/Histidine/hectocotylus/whole-BS-01/fq/*
Started analysis of 1_ATCACG_L001_R1_001.fastq
Started analysis of 2_CGATGT_L001_R1_001.fastq
Started analysis of 3_TTAGGC_L001_R1_001.fastq
...

8_ACTTGA_L001_R1_001_fastq_FastQC_Report_1C50546C.png

this unusual pattern seem to hold true..

In [ ]:

 

Share

Since you’ve been gone

Soon after Ensenada I went to Chili, SICB, and PAG (in that order). The new year is often of time to let go of lingering projects, and likely I will be doing that soon. But to bring a few pending efforts to the forefront, so that I can analyze etc here is a bit of data that is (or soon will) be coming in.
Much of this is centered around the Ostrea lurida.


The first batch was 2bRAD data.
sheet

The full list of samples are here.

sc

These raw data are here.

A quick fastqc….


We also now have a fresh set of MBD-BS.. now out for sequencing.
Pregame here

pic


And just some plain old BS
pic

Details

Share