Tag Archives: DNA Quantification

DNA Quantification – Acropora cervicornis (Staghorn coral) DNA from Javier Casariego (FIU)

DNA samples received yesterday were quantified using the Roberts Lab Qubit 3.0 to improve quantification accuracy (samples provided by Javier were quantified via NanoDrop, which generally overestimates DNA concentration) prior to performing methylation assessment.

Quantification was performed using the dsDNA Broad Range Kit.

Used 1uL of each sample.

Results:

Three samples are too dilute for immediate use in the MethylFlash Methylated DNA Quantification Kit (Colorimetric) – max sample volume is 8uL. Will have to concentrate them (will likely use SpeedVac to prevent sample loss).

Values were added to the spreadsheet provided by Javier (Google Sheet): A.cervicornis_DNA_Extractions(May_2017).xlsx

Qubit output file (Google Sheet): 20170510_qubit_A_cervicornis_DNA

 

Share

DNA Quantification – Ava’s RLO Transmission DNA

Quantified the DNA I isolated on 20170504 and earlier today using the Roberts Lab’s Qubit 3.0 and the dsDNA Broad Range assay.

Used 1uL of each sample.

Results:

The following samples were below the level of sensitivity of the Qubit assay:

  • 15:09-142
  • 15:11-113
  • 15:11-147
  • 15:11-149

Qubit output data (Google Sheet): 20170509_Ava_RLO_quantification_qubit

An easier-to-read summary of all the samples is here (Google Sheet): 20170502_Ava_Ab_List

 

Share

DNA Quantification – RLO viability DNased RNA

I previously DNased RNA I isolated from water filters that were part of the RLO viability experiment that Lisa and the Capstone students are conducting. I checked for residual gDNA carryover via qPCR and all of the samples that were intended for dosing the abalone came up positive. It’s likely due to such a high quantity of algae that was co-filtered with the potential RLOs, leading to over-saturation of the RNAzol with DNA, resulting in the gDNA carryover.

In turn, I think the DNase treatment was insufficient for the quantity of carryover DNA.

I am planning on re-DNasing those samples, but want to quantify any residual DNA present to make sure that the samples aren’t still too concentrated for the DNase.

Samples were quantified using the Robert Lab Qubit 3.0 and the Qubit dsHS reagents (high sensitivity), using 1uL of sample.

Results:

Residual DNA is still present, but at levels that are well below the maximum that the DNase treatment (10ug) can handle. I will redo the DNase treatment on these samples. Spreadsheet is linked, and embedded below, with sample concentrations.

Spreadsheet (Google Sheet): 20170424_filter_rna_dna_quant

Share

DNA Quantification – Black Abalone DNA (Black Ab Exp. 2)

Lisa recently isolated DNA from the following samples:

08:13-05 (Black Ab exp 2)
08:13-18 (Black Ab exp 2)
08:13-24 (Black Ab exp 2)
08:13-25 (Black Ab exp 2)

I quantified the samples using the Roberts Lab Qubit 3.0 with the Qubit ds High Sensitivity kit. Used 1uL of each sample.

Samples were stored in designated boxes in -20C in Rm. 240.

Results:

Qubit output (Google Sheet): 20170413_DNA_quantification_qubit

 

SAMPLE CONCENTRATION (ng/uL)
08:13-05 62.4
08:13-18 0.536
08:13-24 0.454
08:13-25 8.8

NOTE: The entirety of sample 08:13-24 will be provided to Stan Langevin for high-throughput sequencing.

Share

DNA Isolation – Geoduck gDNA for Illumina-initiated Sequencing Project

We were previously approached by Cindy Lawley (Illumina Market Development) for possible participation in an Illumina product development project, in which they wanted to have some geoduck tissue and DNA on-hand in case Illumina green-lighted the use of geoduck for testing out the new sequencing platform on non-model organisms. Well, guess what, Illumina has give the green light for sequencing our geoduck! However, they need at least 4μg of gDNA, so I’m isolating more.

Isolated DNA from ctenidia tissue from the same Panopea generosa individual used for the BGI sequencing efforts. Tissue was collected by Brent & Steven on 20150811.

Used the E.Z.N.A. Mollusc Kit (Omega) to isolate DNA from five separate ~60mg pieces of ctenidia tissue according to the manufacturer’s protocol, with the following changes:

  • Samples were homogenized with plastic, disposable pestle in 350μL of ML1 Buffer
  • Incubated homogenate at 60C for 1hr
  • No optional steps were used
  • Performed three rounds of 24:1 chloroform:IAA treatment
  • Eluted each in 50μL of Elution Buffer and pooled into a single sample

Quantified the DNA using the Qubit dsDNA BR Kit (Invitrogen). Used 1μL of DNA sample.

Concentration = 162ng/μL (Quant data is here [Google Sheet]: 20170105_gDNA_geoduck_qubit_quant

Yield is great (total = ~32μg).

Evaluated gDNA quality (i.e. integrity) by running 162ng (1μL) of sample on 0.8% agarose, low-TAE gel stained with ethidium bromide.

Used 5μL of O’GeneRuler DNA Ladder Mix (ThermoFisher).

 

Results:

 

 

DNA looks good: bright high molecular weight band, minimal smearing, and minimal RNA carryover (seen as more intense “smear” at ~500bp).

Will send off 10μg (they only requested 4μg) so that they have extra to work with in case they come across any issues.

Share

DNA Isolation – Ostrea lurida DNA for PacBio Sequencing

In an attempt to improve upon the partial genome assembly we received from BGI, we will be sending DNA to the UW PacBio core facility for additional sequencing.

Isolated DNA from mantle tissue from the same Ostrea lurida individual used for the BGI sequencing efforts. Tissue was collected by Brent & Steven on 20150812.

Used the E.Z.N.A. Mollusc Kit (Omega) to isolate DNA from two separate 50mg pieces of mantle tissue according to the manufacturer’s protocol, with the following changes:

  • Samples were homogenized with plastic, disposable pestle in 350μL of ML1 Buffer
  • Incubated homogenate at 60C for 1.5hrs
  • No optional steps were used
  • Performed three rounds of 24:1 chloroform:IAA treatment
  • Eluted each in 50μL of Elution Buffer and pooled into a single sample

Quantified the DNA using the Qubit dsDNA BR Kit (Invitrogen). Used 1μL of DNA sample.

Concentration = 326ng/μL (Quant data is here [Google Sheet]: 20161214_gDNA_Olurida_qubit_quant

Yield is good and we have more than enough (~5μg is required for sequencing) to proceed with sequencing.

Evaluated gDNA quality (i.e. integrity) by running ~500ng (1.5μL) of sample on 0.8% agarose, low-TAE gel stained with ethidium bromide.

Used 5μL of O’GeneRuler DNA Ladder Mix (ThermoFisher).

Results:

 

 

Overall, the gel looks OK. A fair amount of smearing, but a strong, high molecular weight band is present. The intensity of the smearing is likely due to the fact that the gel is overloaded for this particular well size. If I had used a broader comb and/or loaded less DNA, the band would be more defined and the smearing would be less prominent.

Will submit sample to the UW PacBio facility tomorrow!

Share

DNA Quantification – Ava Withering Syndrome Transmission Study Samples

DNA samples from 20160818 (water filters) and 20160825 (feces) were quantified using the Roberts Lab Qubit 3.0 (Life Technologies) using the Qubit ds DNA HS (high sensitivity) reagents. Used 5μL of each sample.

Results:

Raw Qubit readout (Google Sheets):

 

Master spreadsheet for these, and future, samples for this project (Google Sheet): Ava WS Transmission DNA Extractions

Share

DNA Quantification – Ava Withering Syndrome Transmission Study Samples

DNA samples from yesterday and this morning were quantified using the Roberts Lab Qubit 3.0 (Life Technologies) using the Qubit ds DNA BR reagents. Used 1μL of each sample.

Results:

Raw Qubit readout (Google Sheet): 20160810_DNA_quant_Qubit_Ava_abalone_WS

Master spreadsheet for these, and future, samples for this project (Google Sheet): Ava WS Transmission DNA Extractions

Share

DNA Extraction & Quantification – Ava Withering Syndrome Transmission Study Tissues

Isolated DNA from 27 tissue samples provided by Ava. Presumably, the tissues were digestive gland and I believe they were preserved in ethanol. The list of samples can be seen in the results below.

DNA was extracted using the QIAmp Fast DNA Stool Mini Kit (Qiagen) following the manufacturer’s protocol with the following options:

  • Samples were briefly homogenized (due to their stiffness resulting from ethanol fixation) in the InhibitEX Buffer using disposable plastic pestles.
  • Homogenized tissue was incubated at 95C to maximize cell lysis
  • Followed “human DNA analysis” protocol for remainder of protocol (to maximize sample recovery)
  • Eluted DNA with 100μL Buffer ATE

After extraction, the samples were quantified using the Roberts Lab Qubit 3.0 (Life Technologies) using the Qubit ds DNA BR reagents. Used 1μL of each sample.

Samples were stored at 4C in FSH240 in the box “Ava WS Transmission DNA Extractions by Sam Box 1″. See the master spreadsheet at the bottom of this post for specific sample locations within this box.

Results:

cage_number accession_number concentration(ng/μL)
9 15:10-29 92
2 15:10-40 114
2 15:10-41 102
2 15:10-42 96
2 15:10-43 101
2 15:10-44 128
11 15:8-95 73
11 15:8-96 74
11 15:8-97 73
11 15:8-98 130
11 15:8-99 42
1 15:8-100 106
1 15:8-101 96
1 15:8-102 91
1 15:8-103 79
1 15:8-104 48
1 15:8-105 197
1 15:10-1 43
1 15:10-2 187
1 15:10-3 123
1 15:10-4 83
1 15:10-5 123
27 15:11-30 82
27 15:11-31 121
27 15:11-32 83
27 15:11-33 113
27 15:11-34 66

Raw Qubit readout (Google Sheet): 20160725_DNA_quant_Qubit_Ava_abalone_WS

Master spreadsheet for these, and future, samples for this project (Google Sheet): Ava WS Transmission DNA Extractions

Share

DNA Extraction & Quantification – Ava Withering Syndrome Transmission Study Tissues

Isolated DNA from 24 tissue samples provided by Ava. Presumably, the tissues were digestive gland and I believe they were preserved in ethanol. The list of samples can be seen in the results below.

DNA was extracted using the QIAmp Fast DNA Stool Mini Kit (Qiagen) following the manufacturer’s protocol with the following options:

  • Samples were briefly homogenized (due to their stiffness resulting from ethanol fixation) in the InhibitEX Buffer using disposable plastic pestles.
  • Homogenized tissue was incubated at 95C to maximize cell lysis
  • Followed “human DNA analysis” protocol for remainder of protocol (to maximize sample recovery)
  • Eluted DNA with 100μL Buffer ATE

After extraction, the samples were quantified using the Roberts Lab Qubit 3.0 (Life Technologies) using the Qubit ds DNA BR reagents. Used 1μL of each sample.

Samples were stored at 4C in FSH240 in the box “Ava WS Transmission DNA Extractions by Sam Box 1″. See the master spreadsheet at the bottom of this post for specific sample locations within this box.

Results:

cage_number accession_number concentration(ng/uL)
21 15:11-89 168
21 15:11-90 69.2
21 15:11-91 70.4
21 15:11-92 58.8
21 15:11-93 61.6
17 15:11-84 48
17 15:11-85 80
17 15:11-86 138
17 15:11-87 68
17 15:11-88 18.2
23 15:9-144 60
23 15:9-145 72
23 15:9-146 121
23 15:9-147 159
23 15:9-148 41.8
20 15:11-100 29
20 15:11-101 133
20 15:11-102 116
20 15:11-103 163
20 15:11-104 162
9 15:10-25 226
9 15:10-26 133
9 15:10-27 182
9 15:10-28 194

 

Raw Qubit readout (Google Sheet): 20160721_DNA_quant_Qubit_Ava_abalone_WS

Master spreadsheet for these, and future, samples for this project (Google Sheet): Ava WS Transmission DNA Extractions

 

Share