Tag Archives: MBD

MBD Enrichment – Crassostrea virginica Sheared DNA Day 3

Continued MBD enrichment of C.virginica DNA from yesterday for Qiagen project.

Followed the MethylMiner Methylated DNA Enrichment Kit (Invitrogen) manufacturer’s protocol for input DNA amounts of 1 -10ug (I am using 8ug in each of two samples).

Since the protocol has two elution steps that are each saved separately from each other for each sample, I did the following to combine the two elution fractions into a single sample:

  • Pelleted one elution fraction from each sample
  • Discarded supernatant from pelleted sample
  • Transferred second elution fraction to the pellet from the first elution fraction
  • Pelleted second elution fraction

The rest of the ethanol precipitation procedure was followed per the manufacturer’s protocol.

Final pellets were resuspended in 25μL of Buffer EB (Qiagen) and stored temporarily on ice for quantification.


MBD Enrichment – Crassostrea virginica Sheared DNA Day 2

Continued MBD enrichment for C.virginica and Qiagen project from yesterday.

Followed the MethylMiner Methylated DNA Enrichment Kit (Invitrogen) manufacturer’s protocol for input DNA amounts of 1 -10ug (I am using 8ug in each of two samples).

Performed a single, high-salt elution.

Samples were precipitated O/N @ -80C.


DNA Quantification – MBD-enriched Olympia oyster DNA

Quantified the MBD enriched samples prepped over the last two days: MBD enrichment, EtOH precipiation.

Samples were quantified using the QuantIT dsDNA BR Kit (Invitrogen) according to the manufacturer’s protocol.

Standards were run in triplicate, samples were run in duplicate.

96-well black (opaque) plate was used.

Fluorescence was measured on the Seeb Lab’s Victor 1420 plate reader (Perkin Elmer).


Google Sheet: 20151123_MBD_libraries_quantification

Standard curve looked good – R² = 0.999

MBD recovery ranged from ~250 – 600ng.

MBD percent recoveries ranged from ~2 – 20%. Input DNA quantities were taken from Katherine’s numbers (Google Sheet): Silliman-DNA-Samples

Will contact services about getting bisulfite Illumina sequencing performed.


Wayback to just-MBD

Prior to bisulfite sequencing we did do a couple of MBD enrichment libraries to describe DNA methylation in oysters. Results even were snuck into this perspective.


While I am sure there are genome tracks around, I am ending up #doingitagain.

In short I took the raw Solid reads, align to Crassostrea_gigas.GCA_000297895.1.26.dna.genome in CLC, exported bam, converted to bedgraph, converted to tdf.

In long:
The raw files

1) Imported into CLC v8.0.1

          Discard read names = Yes
          Discard quality scores = No
          Original resource = /Users/sr320/data-genomic/tentacle/solid0078_20110412_FRAG_BC_WHITE_WHITE_F3_SB_METH/solid0078_20110412_FRAG_BC_WHITE_WHITE_F3_QV_SB_MOTH.qual
          Original resource = /Users/sr320/data-genomic/tentacle/solid0078_20110412_FRAG_BC_WHITE_WHITE_F3_SB_METH/solid0078_20110412_FRAG_BC_WHITE_WHITE_F3_SB_MOTH.csfasta

(yes the core called them MOTH)

2) Reads were mapped


3) Exported as BAM.

4) Converted to bedgraph

-ibam /Users/sr320/data-genomic/tentacle/solid0078_moth.bam 
-g /Volumes/web/halfshell/qdod3/Cg.GCA_000297895.1.25.dna_sm.toplevel.genome 
> /Users/sr320/data-genomic/tentacle/MBD-meth.bedgraph          

5) Converted to toTDF


Rinse and repeat with unmethylated fraction (UNMOTH) and import tdf into IGV!


Sequencing Data – LSU C.virginica MBD BS-Seq

Our sequencing data (Illumina HiSeq2500, 100SE) for this project has completed by Univ. of Oregon Genomics Core Facility (order number 2112).

Samples sequenced/pooled for this run:

Sample Treatment Barcode
HB2 25,000ppm oil ATCACG
HB16 25,000ppm oil TTAGGC
HB30 25,000ppm oil TGACCA
NB11 No oil CAGATC

All code listed below was run on OS X 10.9.5

Downloaded all 15 fastq.gz files to Owl/web/nightingales/C_virginica:

$curl -O http://gcf.uoregon.edu:8080/job/download/2112?fileName=lane1_NoIndex_L001_R1_001.fastq.gz
$curl -O http://gcf.uoregon.edu:8080/job/download/2112?fileName=lane1_NoIndex_L001_R1_002.fastq.gz
$curl -O http://gcf.uoregon.edu:8080/job/download/2112?fileName=lane1_NoIndex_L001_R1_003.fastq.gz
$curl -O http://gcf.uoregon.edu:8080/job/download/2112?fileName=lane1_NoIndex_L001_R1_004.fastq.gz
$curl -O http://gcf.uoregon.edu:8080/job/download/2112?fileName=lane1_NoIndex_L001_R1_005.fastq.gz
$curl -O http://gcf.uoregon.edu:8080/job/download/2112?fileName=lane1_NoIndex_L001_R1_006.fastq.gz
$curl -O http://gcf.uoregon.edu:8080/job/download/2112?fileName=lane1_NoIndex_L001_R1_007.fastq.gz
$curl -O http://gcf.uoregon.edu:8080/job/download/2112?fileName=lane1_NoIndex_L001_R1_008.fastq.gz
$curl -O http://gcf.uoregon.edu:8080/job/download/2112?fileName=lane1_NoIndex_L001_R1_009.fastq.gz
$curl -O http://gcf.uoregon.edu:8080/job/download/2112?fileName=lane1_NoIndex_L001_R1_010.fastq.gz
$curl -O http://gcf.uoregon.edu:8080/job/download/2112?fileName=lane1_NoIndex_L001_R1_011.fastq.gz
$curl -O http://gcf.uoregon.edu:8080/job/download/2112?fileName=lane1_NoIndex_L001_R1_012.fastq.gz
$curl -O http://gcf.uoregon.edu:8080/job/download/2112?fileName=lane1_NoIndex_L001_R1_013.fastq.gz
$curl -O http://gcf.uoregon.edu:8080/job/download/2112?fileName=lane1_NoIndex_L001_R1_014.fastq.gz
$curl -O http://gcf.uoregon.edu:8080/job/download/2112?fileName=lane1_NoIndex_L001_R1_015.fastq.gz


Renamed all files by removing the beginning of each file name (2112?fileName=) and replacing that with 2112_:

$for file in 2112*lane1_NoIndex_L001_R1_0*; do mv "$file" "${file/#2112?fileName=/2112_}"; done


Created a directory readme.md (markdown) file to list & describe directory contents: readme.md

$ls *.gz >> readme.md

Note: In order for the readme file to appear in the web directory listing, the file cannot be all upper-case.


Created MD5 checksums for each fastq.gz file: checksums.md5

$md5 *.gz >> checksums.md5