Tag Archives: RLOv_DNA_helicase

qPCR – CDFW White Abalone Samples (RLOv DNA helicase)

The samples that CDFW sent us earlier were previously checked for RLO presence with the withering syndrome qPCR assay.

Standard curve was from 20151106.

All samples were run in duplicate.

Master mix calcs are here; since I ran these with the other samples, the master mix used was part of the other project indicated in the spreadsheet (Google Sheet): 20170420 – qPCR RLOv DNA Helicase

Plate layout, cycling params, etc. can be found in the qPCR Report (see Results).

Baseline threshold was manually set to 580.5, as previously determined.

Results:

qPCR Report (PDF): Sam_2017-04-20 07-50-18_CC009827.pdf
qPCR Data File (CFX): Sam_2017-04-20 07-50-18_CC009827.pcrd

Standard curve looks good and all samples provided come up positive for RLOv DNA helicase.

I’ve compiled the raw data of both the WSN qPCR and this in this Google Sheet: 20170420_CDFW_White_Ab_qPCR_summary

Here’s a summary table of the results (copy numbers are mean copies from qPCR replicates):

SAMPLE RLOV DNA HELICASE (COPIES) WSN1 (COPIES)
SF16-76_DG-1  165318.58 169.25
 SF16-76_DG-2  47839.81  20.70
 SF16-76_PE-1  1036697.17 633.75
 SF16-76_PE-2  46763.60  296.83
 SF17-17  117.29  2.16

NOTE: The WSN1 copies for SF17-17 is below the accepted detection limit of the qPCR assay (i.e. < 3 copies).

Will share my notebooks and spreadsheet with Blythe at CDFW.

Amplification Plots

Green = Standard Curve

Blue = Samples

Red = No template control

 

 

Share

Data Summary – Black Abalone Phage qPCRs

A quick summary table of the various black abalone qPCRs I ran yesterday:

SAMPLE RLO_MCP RLO_ph_protease XC_prophage_portal RLOv_DNA_helicase WSN
06:06-50  +  +  +  +  +
06:06-52  +  +  +  +  +
07:12-01  -  -  -  +  -
07:12-02  -  -  -  -  -
08:13-05  +  +  +  -  +
08:13-18  +  +  +  -  +
08:13-24  +  +  +  -  +*
08:13-25  +  +  +  -  +
  • This sample technically showed amplification, but came up after the last point on the standard curve. Most likely due to extremely low concentration (~0.5ng/uL).

  • RLO Major Capsid Protein (RLO_MCP)

  • RLO Prohead Protease Protein (RLO_ph_protease)
  • XenoCal Phage Portal Gene (XC prophage)
Share

qPCR – RLOv DNA Helicase on Black Abalone

Ran qPCRs on a set of black abalone digestive gland DNA (sample list provided by Carolyn):

07:12-01 (Black Ab exp 1)
07:12-02 (Black Ab exp 1)
08:13-05 (Black Ab exp 2)
08:13-18 (Black Ab exp 2)
08:13-24 (Black Ab exp 2)
08:13-25 (Black Ab exp 2)
UW06:06-32
UW06:06-41

UW06:06-50 (Black Ab exp 1)
UW06:06-52 (Black Ab exp 1)

The two samples with a strikethrough did not have any DNA left in the tubes and were not run.

All samples were run in duplicate.

Standard curve was from 20161106.

Cycling params, plate layout, etc can be seen in the qPCR Report (see Results).

Baseline was set 580.5 as previously determined.

Results:
qPCR Report (PDF): Sam_2017-04-13%2016-20-54_CC009827_RLOv_helicase.pdf
qPCR Data File (CFX): Sam_2017-04-13%2016-20-54_CC009827_RLOv_helicase.pcrd

Standard curve looked good, although efficiency is pushing it on the high end.

The following samples did <em>not</em> amplify:

  • 07:12-02
  • All 08 samples.

The remaining samples all came up positive, with the 06 set being extremely hot (came up around cycle 13).

Will convey to Carolyn and Stan.

 

 

Share

qPCR – RLOv DNA helicase and XenoCal prophage on Ab Endo Water Filters

Stan Langevin was interested in seeing if the RLOv (phage) and/or the prophage portal genes were detectable in water samples from Lisa’s Ab Endo project.

Ran qPCR on the following samples that Lisa selected:

DNA from water filters collected in 2010. DNA isolated 20120111:

  • CP 0M A
  • CP 0M B
  • MA 0M A
  • MA 0M B
  • PSN 0M A
  • PSN 0M B
  • RM A
  • RM B

DNA from water filters collected in 2011. DNA isolated 20140822:

  • AM Drain 2B
  • PCI SRI PC 1B

RLOv_DNA_helicase master mix calcs are here (Google Sheet): 20161213 – qPCR RLOv DNA Helicase

XenoCal prophage master mix calcs are here (Google Sheet): 20161213 – qPCR XenoCal phage portal

RLOv_DNA_helicase standard curve from 20151224.

All samples were run in duplicate. Plate layout, cycling params, etc. can be seen in the qPCR Report below.

Results:

RLOv_DNA_helicase
qPCR Report (PDF): Sam_2016-12-13 14-52-05_CC009827_RLOv_helicase.pdf
qPCR Data File (CFX): Sam_2016-12-13 14-52-05_CC009827_RLOv_helicase.pcrd

 

XenoCal prophage
qPCR Report (PDF): Sam_2016-12-13 14-52-05_CC009827_XCprophage.pdf
qPCR Data File (CFX): Sam_2016-12-13 14-52-05_CC009827_XCprophage.pcrd

 

  • RLOv DNA helicase amplified in all samples EXCEPT the two samples from 2011. These two samples were negative for the RLO (see Ab Endo sheet “water 2011″).
  •  XC prophage amplfied inconsistently (i.e. replicates did not match/amplify) in only three samples. Additionally, the melt curve of one of those samples differs from the other two. Based on the inconsistencies in technical reps, I should probably repeat this, but technical reps across all of the RLOv DNA helicase samples are very tight, suggesting that my technique was fine (it would be odd if my technique faltered only on ALL of the XC prophage samples)…

 

RLOv DNA HELICASE

 


 

XENOCAL PROPHAGE

 

Share

qPCR – LCM DNA

Ran three primer sets on laser capture microscopy (LCM) DNA samples from 2005 and 2007. Ran the following primer sets:

  • WSN1 (detects RLO)
  • RLOv_helicase (detects RLO phage)
  • XenoCal_prophage

The DNA samples were provided to me by Lisa. I’m not entirely sure of their history:

 

Master mix calcs (Google Sheets):

All samples were run in duplicate. Plate layout, cycling params, etc. are in the qPCR Reports (see Results below).

Standard curves:

Baseline threshold was manually set to 580 for the WSN1 samples, as previously determined by Lisa for this assay.

Baseline threshold was manually set to 580.5 for the RLOv DNA helicase samples, as previously determined by me on 20160128.

 

Results:

WSN1:

 

RLOv DNA helicase:

 

XenoCal prophage:

 

Summary table of all three genes in each sample. Unfortunately, I don’t fully understand the sample name nomenclature, so I can’t really come to any conclusions about the data. Will pass along to Carolyn, Lisa, and Stan.

It’s also important to note that, due to low sample volume, I did not quantify these samples. This is important because any samples listed below that are negative for all three genes can not be conclusively declared “negative”, since we can’t rule out the possibility that they simply lack any DNA.

Presumably they were quantified after their initial extraction?

SAMPLE WSN1 RLOv DNA HELICASE XC PROPHAGE
LCM New RLO 09 + + +
LCM ST RLO 09 - - -
LCM New 08:30-5 B + + +
LCM New 08:30-5 - - -
LCM ST 08:30-3 - - -
LCM WS RLO + - +

 

STANDARD, AMPLIFICATION, & MELT CURVES

 

WSN1

 

 


 

 

RLOv_DNA_helicase

 


 

 

XenoCal prophage

Share

Data Aggregation – Black Abalone qPCR Data for RLOv DNA helicase, WSN, & XC Prophage Portal Genes

Carolyn & Stand Langevin wanted some additional qPCR data for the three gene targets listed above from the 1st and 2nd black abalone experiments. I had previously aggregated dated for withering syndrome (WSN1) from the 1st black abalone experiment. Additionally, I ran qPCRs with RLOv DNA helicase and XC prophage portal genes on the black abalone samples from the 1st and 2nd experiments.

Below, is the mean Ct (Cq) and mean copy number (not applicable for XC prophage portal gene, since we don’t have a standard curve developed for this target yet) for each of the samples – sorted by abalone experiment, followed by sample accession number.

The quick summary is:

  • No phage (RLOv DNA helicase) detected in samples from 2nd black abalone experiment.
  • All but two samples (06:6-44 and 07:12-18) are positive for XC prophage portal gene.
  • Other than the 2nd black abalone experiment samples, all are positive for all three gene targets (except the two exceptions noted above).

Will email data/info to Carolyn and Stan.

I will also add this info to Lisa’s Google Sheet: Black Abalone: Expt 1 – WS & Phage. This sheet is a comprehensive collection of all the data accumulated (including histology scores, abalone gene targets, abalone morphology, etc) from the 1st abalone experiment.

 

Google Sheet: 20160425_black_ab_qPCR_gene_summaries

Share

qPCR – WSN1 & RLOv DNA helicase on Black Abalone 2nd Experiment 08:13 Accessions

Checking DNA isolated earlier today from the 2nd black abalone experiment to see if withering syndrome (RLO) and/or the withering syndrome phage (RLOv) is detectable in these samples.

Master mix calcs

Standard curves

All samples were run in duplicate.

Plate layout, cycling params, etc. can be seen in the qPCR Report (see Results below).

Baseline thresholds were set to the following values for each assay (RLOv threshold determined by me on 20160128; WSN1 threshold determined by Lisa):

RLOv DNA helicase: 580.5

WSN1: 580

Results:

qPCR Report – RLOv DNA helicase (PDF): Sam_2016-04-21 12-39-33_CC009827_RLOv_DNA_helicase.pdf
qPCR Report – WSN1 (PDF): Sam_2016-04-21 12-39-33_CC009827_WSN.pdf
qPCR Data File (CFX): Sam_2016-04-21 12-39-33_CC009827.pcrd

RLOv DNA helicase does not amplify in any samples.

WSN1 amplifies in all samples.

All samples are RLO+/RLOv-, as seen in the previous set of 08:13 samples that I qPCR’d.

 

RLOv DNA Helicase Standard Curve

 

 

RLOv DNA Helicase Amplification (Green = Std Cuve, Blue = Samples)

 

 

 

WSN1 Standard Curve

 

WSN1 Amplification (Blue = Standard Curve, Magenta= Samples)

Share

Data Aggregation – WS RLO and RLOv DNA Helicase qPCR and WS RLO Infection Intensities

Carolyn asked me to send her the data described above.

RLOv DNA helicase qPCR data were grabbed from the qPCR I ran on 20160106.

The qPCR data for withering syndrome RLO were culled from these three different spreadsheets:

 

The summary is below. I have emailed a copy of the spreadsheet to Carolyn.

Google Sheet: 20160404_Summary_RLO_RLOvDNAhelicase_qPCR_HistoIntensities

Share

qPCR – WSN1 & RLOv DNA helicase on Black Abalone 2nd Experiment 08:13 Accessions

Ran WSN1 and RLOv DNA helicase qPCRs on the black abalone DNA I extracted yesterday to assess whether or not these samples are RLO+/- and RLOv+/-. According to Carolyn (and this spreadsheet), they should all be RLO+/RLOv-, which is what I need in order to proceed with testing samples with the XenoCal prophage portal primers.

WSN1 Master Mix Calcs (Google Sheet): 20150330 – qPCR Black Ab 08:13 WSN1 Check

RLOv DNA Helicase Master Mix Calcs (Google Sheet): 20160330 – qPCR Black Ab 08:13 RLOv check

All samples were run in duplicate.

Plate layout, cycling params, etc. are in the qPCR Report (see Results section below).

RLOv DNA helicase standard curve from 20151224.

WSN p18RK7 standard curve from 20160316.

Baseline thresholds were set to the following values for each assay (RLOv threshold determined by me on 20160128; WSN1 threshold determined by Lisa):

RLOv DNA helicase: 580.5

WSN1: 580

Results:
qPCR Report (PDF): Sam_2016-03-30 10-00-07_CC009827.pdf
qPCR Data File (CFX96): Sam_2016-03-30 10-00-07_CC009827.pcrd

All samples are RLO+/RLOv-. This is great and can proceed with checking them with the XenoCal prophage portal primers.

 

RLOv DNA Helicase Standard Curve

 

RLOv DNA Helicase Amplification (Green = Std Cuve, Blue = Samples)

 

 

WSN1 Standard Curve

 

WSN1 Amplification (Blue = Standard Curve, Black = Samples)

Share

qPCR – Repeat Phage Portal Primer Specificity Check

This should be the last time I run this for the time being. Re-running this with undiluted RLOv- samples to improve the melt curve resolution for better comparison to the RLOv+ melt curves.

See the earlier qPCR run for master mix calcs.

All samples were run in duplicate.

See the qPCR Report (see Results below) for plate layout, cycling params, etc.

Results:

qPCR Report (PDF): Sam_2016-03-17 13-30-29_CC009827.pdf
qPCR Data File (CFX): Sam_2016-03-17 13-30-29_CC009827.pcrd

These results are interesting and I believe they are real, as opposed to the confusing/conflicting information I got from the previous two qPCRs from earlier today with the phage portal gene primers.

The poor/confusing results from the two previous qPCR attempts seem to have stemmed from low sample concentration. Using undiluted RLOv- samples in this run has resulted in clear, definitive data.

The melt curves are of a single peak in all RLOv+ samples.

The phage portal gene is NOT detected in RLOv- samples. However, it is present in RLOv+ samples and at significantly lower abundance than the RLOv DNA helicase (DNA helicase comes up at ~23 Cqs in samples that have been diluted 1:1000, while the phage portal gene comes up at ~28 Cqs in UNDILUTED samples). Alternatively, it is possible that the phage portal qPCR is less efficient and/or is experiencing some sort of inhibition; both seem unlikely, though.

Will discuss with Carolyn to see if she wants to go forward with cloning/sequencing and construction of a plasmid standard curve for the phage portal gene.


qPCR Amplification Plots (DNA helicase in green; Phage portal gene in blue)

 


 

qPCR Amplification Plots of Phage Portal Gene

 

qPCR Melt Curves of Phage Portal Gene

Share