Software Install – 10x Genomics Supernova on Mox (Hyak)

Steven asked me to install Supernova (by 10x Genomics on our Mox node.

First, need to install a dependency: bcl2fastq2
Followed Illumina bcl2fastq2 manual (PDF)

Logged into Mox and initiated a Build node:

srun -p build --time=1:00:00 --pty /bin/bash

Install bclsfastq2 dependency

Illumina bcl2fastq2 manual (PDF)

cd /gscratch/srlab/tmp
wget ftp://webdata2:webdata2@ussd-ftp.illumina.com/downloads/software/bcl2fastq/bcl2fastq2-v2-20-0-tar.zip
export TMP=/gscratch/srlab/tmp/
export SOURCE=${TMP}/bcl2fastq
export BUILD=${TMP}/bcl2fastq2.20-build
export INSTALL_DIR=/gscratch/srlab/programs/bcl2fastq-v2.20
cd ${TMP}
unzip bcl2fastq2-v2-20-0-tar.zip
tar -xvzf bcl2fastq2-v2.20.0.422-Source.tar.gz
cd ${BUILD}
chmod ugo+x ${SOURCE}/src/configure
chmod ugo+x ${SOURCE}/src/cmake/bootstrap/installCmake.sh
${SOURCE}/src/configure --prefix=${INSTALL_DIR}
cd ${BUILD}
make
make install

Install Supernova 2.0.0

Supernova install directions

cd /gscratch/srlab/programs
wget -O supernova-2.0.0.tar.gz "http://cf.10xgenomics.com/releases/assembly/supernova-2.0.0.tar.gz?Expires=1516707075&Policy=eyJTdGF0ZW1lbnQiOlt7IlJlc291cmNlIjoiaHR0cDovL2NmLjEweGdlbm9taWNzLmNvbS9yZWxlYXNlcy9hc3NlbWJseS9zdXBlcm5vdmEtMi4wLjAudGFyLmd6IiwiQ29uZGl0aW9uIjp7IkRhdGVMZXNzVGhhbiI6eyJBV1M6RXBvY2hUaW1lIjoxNTE2NzA3MDc1fX19XX0_&Signature=XJR7c9UlSkueydP304nKJrqomLXBH9~DWsenwlvBrplFMojbO-DPMghO09Sk6Wi5ApZSPwKB3sl1Wrnjy3qBLwr7dCoT~9oStyBpqlF~Xl2nBY6odnTzUaq3IpLyu8icIkt7DJM0GMXQTTp6rYu1PlLG31hMM5b5HZI3Tjzrhk8URbSrsG~7mm6m5-28afYHX00kT2Xfor7xr-ZSjjLe2jr99SEIARfzZjt6kUEnDMbl~3FXCHsSxXzKrkYXobGmfQhYBrey0iRyCAc9yNF7eSuBHAsqRGsP2yURVcYf3BB5nB1ZuEUo0qLgc5GlZJDQdsqDNC69HkyLCJamkJSnVg__&Key-Pair-Id=APKAI7S6A5RYOXBWRPDA"
tar -xzvf supernova-2.0.0.tar.gz
rm supernova-2.0.0.tar.gz
cd supernova-2.0.0
supernova-cs/2.0.0/bin/supernova sitecheck > sitecheck.txt
supernova-cs/2.0.0/bin/supernova upload samwhite@uw.edu sitecheck.txt
srun -p srlab -A srlab --time=2:00:00 --pty /bin/bash
/gscratch/srlab/programs/supernova-2.0.0/supernova testrun --id=tiny

OK, looks like the test run finished successfully.

Assembly Comparisons – Oly Assemblies Using Quast

I ran Quast to compare all of our current Olympia oyster genome assemblies.

See Jupyter Notebook in Results section for Quast execution.

Results:

Output folder: http://owl.fish.washington.edu/Athaliana/quast_results/results_2018_01_16_10_08_35/

Heatmapped table of results: http://owl.fish.washington.edu/Athaliana/quast_results/results_2018_01_16_10_08_35/report.html

Very enlightening!

After all the difficulties with PB Jelly, it has produced the most large contigs. However, it does also have the highest quantity and rate of N’s of all the assemblies produced to date.

BEST OF:

contigs (>= 50000 bp): pbjelly_sjw_01 (894)

Largest Contig: redundans_sjw_02 (322,397bp)
Total Length: pbjelly_sjw_01 (1,180,563,613bp)
Total Length (>=50,000bp): pbjelly_sjw_01 (57,741,906bp)
N50: redundans_sjw_03 (17,679bp)

Jupyter Notebook (GitHub): 20180116_swoose_oly_assembly_comparisons_quast.ipynb

DNA Quantification – MspI-digested Crassostrea virginica gDNA

Quantified the two MspI-digested DNA samples for the Qiagen project from earlier today with the Qubit 3.0 (ThermoFisher).

Used the Qubit dsDNA Broad Range (BR) Kit (ThermoFisher).

Used 1μL of DNA from each sample (including undigested gDNA from initial isolation 20171211

Results:

Quantification (Google Sheet): 20180111_qubit_DNA_MspI_virginica

Yields are good and are sufficient for submission to Qiagen:

MspI_virginica_01 – 53.4ng/μL (1335ng; 89% recovery after phenol/chloroform/EtOH precip)
MspI_virginca_02 – 31.0ng/μL (775ng; ~52% recovery after phenol/chloroform/EtOH precip)

Phenol:Chloroform Extractions and EtOH Precipitations – MspI Digestions of C.virginica DNA from Earlier Today

The two MspI restriction digestions from earlier today for our project with Qiagen were subjected to phenol:chloroform cleanup and subsequent ethanol precipitations.

Phenol:chloroform clean up procedure:

  1. Added equal volume (50μL) of phenol:chloroform:IAA (25:24:1) to each sample.

  2. Vortexed.

  3. Centrifuged 5mins, 16,000g at room temperature.

  4. Transferred aqueous phase (top layer) to clean 0.5mL snap-cap PCR tube.

  5. Added equal volume of chloroform (50μL) to aqueous phase.

  6. Vortexed.

  7. Centrifuged 5mins, 16,000g at room temperature.

  8. Transferred aqueous phase (top layer) to clean 0.5mL snap-cap PCR tube.

Performed ethanol precipitation on both samples according to lab protocol.

Resuspended precipitated DNA in 25μL Buffer EB (Qiagen).

Will quantify with Qubit 3.0.

Restriction Digestion – MspI on Crassotrea virginica gDNA

Digested two 1.5μg aliquots of Crassostrea virginica isolated 20171211, as part of the project we’re doing with Qiagen.

Digestion reactions:

Component Volume(μL)
DNA (1.5μg) 25.7
10x CutSmart Buffer (NEB) 5.0
Water 17.3
MspI (NEB) 2
TOTAL 50

MspI info:

  • NEB R0106T (100,000U/mL; rec’d 20171214)

Reactions were carried out in 0.5mL snap-cap PCR tubes and incubated for 15mins @ 37oC in a PTC-200 thermalcycler (MJ Research), no heated lid.

Samples will be subjected to a phenol:chloroform extraction for cleanup.

DNA Quantification – C.virginica MBD-enriched DNA

Quantified Crassostrea virginica MBD-enriched DNA from earlier today for Qiagen project.

Used the Qubit 3.0 (ThermoFisher) and the Qubit dsDNA Broad Range (BR) Kit (ThermoFisher).

Used 1uL of template DNA.

Results:

Quantification Spreadsheet (Google Sheet): 20180110_qubit_dsDNA_BR_MBD_virginica

Both samples had decent yields and have usable quantities for Qiagen (they wanted ~300ng from each sample):

virginica_MBD_01 – 18.3ng/uL (457.5ng = 5.7% methylated DNA capture)

virginica_MBD_02 – 19.6ng/uL (490ng = 6.1% methylated DNA capture)

Will store @ -20C until next week so that we’re not shipping so close to the weekend (shipping address is in Germany).

MBD Enrichment – Crassostrea virginica Sheared DNA Day 3

Continued MBD enrichment of C.virginica DNA from yesterday for Qiagen project.

Followed the MethylMiner Methylated DNA Enrichment Kit (Invitrogen) manufacturer’s protocol for input DNA amounts of 1 -10ug (I am using 8ug in each of two samples).

Since the protocol has two elution steps that are each saved separately from each other for each sample, I did the following to combine the two elution fractions into a single sample:

  • Pelleted one elution fraction from each sample
  • Discarded supernatant from pelleted sample
  • Transferred second elution fraction to the pellet from the first elution fraction
  • Pelleted second elution fraction

The rest of the ethanol precipitation procedure was followed per the manufacturer’s protocol.

Final pellets were resuspended in 25μL of Buffer EB (Qiagen) and stored temporarily on ice for quantification.

MBD Enrichment – Crassostrea virginica Sheared DNA Day 2

Continued MBD enrichment for C.virginica and Qiagen project from yesterday.

Followed the MethylMiner Methylated DNA Enrichment Kit (Invitrogen) manufacturer’s protocol for input DNA amounts of 1 -10ug (I am using 8ug in each of two samples).

Performed a single, high-salt elution.

Samples were precipitated O/N @ -80C.

MBD Enrichment – Crassostrea virginica Sheared DNA Day 1

As part of a project with Qiagen to have them try out some of our DNA with their newest DNA bisulfite conversion kit, I previously isolated DNA from Crassotrea virginica (Eastern oyster) and sheared to ~420bp.

Next, I needed to enrich the samples for methylated DNA. Did this using the MethylMiner Methylated DNA Enrichment Kit (Invitrogen). Followed the manufacturer’s protocol for input DNA amounts of 1 -10ug (I am using 8ug in each of two samples). Below are the exact volumes used for various steps:

Made 1x Bind/Wash Buffer

  • 2.88mL 5x Bind/Wash Buffer

  • 720uL molecular biology grade H2O

Beads:

  • 80uL beads per sample

MBD-biotion protein:

  • 56uL per sample

Diluted the two sheared DNA samples to 25ng/uL:

  • CiVi = CfVf
  • (58.4ng/uL)(136uL) = (25ng/uL)(Vf)

  • Vf = 317.7

  • Add 181.7uL H2O to DNA to get 317.7ul (i.e. 25ng/uL)

Samples were incubated O/N in the 4C in the rotator.